fbpx
on March 31st, 2021

High velocity projectile impact (HVPI) test was carried out on three classes of cement composites to assess their performance.

The tests were conducted on thick block specimens using non-deformable ogive-nosed projectiles with a mass of 250 g and a diameter of 28 mm at approximately 400 m/s.

The severity of damage was quantified by the depth of penetration (DOP), equivalent crater diameter (ECD), crater volume (CV), and crater profile (CP).

The ability of cement composites to resist the HVPI in terms of DOP seems to be influenced by aggregates because cracks are forced through aggregate at the high strain rate under HVPI.

The energy absorption capacity under direct tension is found to be more relevant than flexural toughness in controlling CV and CP.

Transient temperature under HVPI is likely elevated to about 250 °C in the ultra-high performance fiber reinforced concrete (UHPFRC), which may lead to higher internal pressure built-up (thus damage) than the engineered cementitious composites (ECC).

Read More

The latest news

EIT News

Explore Exciting New EIT Professional Certificates For 2025!

Looking to boost your engineering knowledge? Explore exciting new EIT prof certs for 2025! EIT’s professional certificates for 2025 will help you gain specialized skills in fields like cybersecurity, automation,... Read more
EIT News

Engineers Develop AI-Powered System for Faster Robot Training

The rapid advancement of robotics is transforming industries across the globe, and engineers are leading the charge with innovative solutions. Discover how this breakthrough will impact areas of engineering. Transforming... Read more
EIT News

Discover How Hyundai Turns Food Waste into Hydrogen Power

As the world shifts toward greener energy solutions, hydrogen power is becoming a crucial element in the fight against carbon emissions. A leading South Korean automaker is pioneering a novel... Read more
Engineering Institute of Technology