fbpx
on July 1st, 2011

This paper presents a laboratory experimental study on the effect of high strain rate on compressive behavior of plain and fiber-reinforce high-strength concrete (FRHSC) with similar strength of 80-90 MPa.

Steel fibers, polyethylene fibers, and a combination of these were used in the FRHSC.

A split Hopkinson pressure bar equipment was used to determine the concrete behavior at strain rates from about 30 to 300 s-1.

The ratio of the strength at high strain rates to that at static loading condition, namely dynamic increase factor (DIF), of the concretes was determined and compared with that recommended by CEB-FIP code.

Fracture patterns of the specimens at high strain rates are described and discussed as well.

Results indicate that the CEB-FIP equation is applicable to the plain high strength concrete, but overestimates the DIF of the FRHSC at strain rates beyond a transition strain rate of 30 s-1.

Based on the experimental results, a modified equation on DIF is proposed for the FRHSC.

Read More

The latest news

EIT News

EIT on Engineering Career Pathways Without Leaving Geraldton

On 6 November 2024, the Engineering Institute of Technology (EIT) hosted a regional seminar in Geraldton, Western Australia that offered valuable insights for anyone considering a career as a technician... Read more
EIT News

EIT Wins International Education Award at Australian Export Awards

EIT has been recognized with the prestigious International Education Award at the 62nd Australian Export Awards, highlighting its excellence in global education and training. This achievement underscores EIT’s growing international... Read more
EIT News

Autonomous Security Robots: Their Uses in Hospitals and More

Autonomous security robots are transforming how we think about safety. From hospitals to public spaces, these egg-shaped sentinels are not only patrolling lobbies but also offer real-time surveillance, and their... Read more
Engineering Institute of Technology