fbpx
on December 6th, 2021

Middle size gas/diesel aero-derivative power generation engines are widely used on various industrial plants in the oil and gas industry. Bleed of Valve (BOV) system failure is one of the failure mechanisms of these engines.

The BOV is part of the critical anti-surge system and this kind of failure is almost impossible to identify while the engine is in operation. If the engine operates with BOV system impaired, this leads to the high maintenance cost during overhaul, increased emission rate, fuel consumption and loss in the efficiency.

This paper proposes the use of readily available sensor data in a Supervisory Control and Data Acquisition (SCADA) system in combination with a machine learning algorithm for early identification of BOV system failure.

Different machine learning algorithms and dimensionality reduction techniques are evaluated on real world engine data.

The experimental results show that Bleed of Valve systems failures could be effectively predicted from readily available sensor data.

Read more

The latest news

EIT News

EIT on Engineering Career Pathways Without Leaving Geraldton

On 6 November 2024, the Engineering Institute of Technology (EIT) hosted a regional seminar in Geraldton, Western Australia that offered valuable insights for anyone considering a career as a technician... Read more
EIT News

EIT Wins International Education Award at Australian Export Awards

EIT has been recognized with the prestigious International Education Award at the 62nd Australian Export Awards, highlighting its excellence in global education and training. This achievement underscores EIT’s growing international... Read more
EIT News

Autonomous Security Robots: Their Uses in Hospitals and More

Autonomous security robots are transforming how we think about safety. From hospitals to public spaces, these egg-shaped sentinels are not only patrolling lobbies but also offer real-time surveillance, and their... Read more
Engineering Institute of Technology