The superior reinforcement nature of Laves phases make them suitable for high-strength applications.
Therefore, investigations on the deformation and strength characteristics of Laves phases are useful in development of an improved Laves phase-reinforced alloy.
In this work, the Vickers micro-indentation method is used to evaluate and compare the deformation and strength characteristics of a hexagonal close-packed Laves phase (C14-type) in Ti-35Zr-5Fe-6Mn (wt%) and a face-centered cubic Laves phase (C15-type) in Ti-33Zr-7Fe-4Cr (wt%), considering the same volume fraction of Laves phase (~7.0%) in these alloys.
Moreover, the effects of higher volume fraction of Laves phase (19.4%) on indentation-based deformation features are evaluated in Ti-35Zr-5Fe-8Mn (wt%).
Remarkably, dislocation activity and plastic deformation features are evident in the C15-type Laves phase, whereas the C14-type Laves phase strongly blocks dislocation motion.
Therefore, the C15-type Laves phase improves plastic deformability, whereas the C14-type Laves phase improves strength characteristics of Laves phase-reinforced alloys.