fbpx
on June 1st, 2011

This paper presents a laboratory experimental study on the effect of tensile strength and toughness on the resistance of cement-based materials to high-velocity projectile impact.

Three types of cement-based materials with similar compressive strength but different tensile strengths and toughnesses were examined in terms of the penetration depth, crater diameter, and crack propagation in specimens subjected to impact of ogive-nosed projectile with a diameter of 13.35 mm and a mass of 19 grams traveling at velocities of about 650 m/s.

The materials evaluated include: (i) a plain high-strength concrete (HSC) with low tensile strength and toughness, (ii) a fiber-reinforced concrete (FRHSC) with high toughness but similar flexural tensile strength as the HSC, and (iii) a polymer cement composite (PCC) with high flexural tensile strength but low toughness.

The PCC was developed from a combination of inorganic cements with water-soluble polymers, and it had a 28-day flexural tensile strength of 25 MPa.

Results suggest that the toughness was a more important parameter that contributes to the impact resistance of the cement-based materials. Increasing the tensile strength alone, however, did not seem to contribute to the impact resistance of the cement-based materials.

Read More

The latest news

EIT News

EIT on Engineering Career Pathways Without Leaving Geraldton

On 6 November 2024, the Engineering Institute of Technology (EIT) hosted a regional seminar in Geraldton, Western Australia that offered valuable insights for anyone considering a career as a technician... Read more
EIT News

EIT Wins International Education Award at Australian Export Awards

EIT has been recognized with the prestigious International Education Award at the 62nd Australian Export Awards, highlighting its excellence in global education and training. This achievement underscores EIT’s growing international... Read more
EIT News

Autonomous Security Robots: Their Uses in Hospitals and More

Autonomous security robots are transforming how we think about safety. From hospitals to public spaces, these egg-shaped sentinels are not only patrolling lobbies but also offer real-time surveillance, and their... Read more
Engineering Institute of Technology