on June 1st, 2011

This paper presents a laboratory experimental study on the effect of tensile strength and toughness on the resistance of cement-based materials to high-velocity projectile impact.

Three types of cement-based materials with similar compressive strength but different tensile strengths and toughnesses were examined in terms of the penetration depth, crater diameter, and crack propagation in specimens subjected to impact of ogive-nosed projectile with a diameter of 13.35 mm and a mass of 19 grams traveling at velocities of about 650 m/s.

The materials evaluated include: (i) a plain high-strength concrete (HSC) with low tensile strength and toughness, (ii) a fiber-reinforced concrete (FRHSC) with high toughness but similar flexural tensile strength as the HSC, and (iii) a polymer cement composite (PCC) with high flexural tensile strength but low toughness.

The PCC was developed from a combination of inorganic cements with water-soluble polymers, and it had a 28-day flexural tensile strength of 25 MPa.

Results suggest that the toughness was a more important parameter that contributes to the impact resistance of the cement-based materials. Increasing the tensile strength alone, however, did not seem to contribute to the impact resistance of the cement-based materials.

Read More

The latest news

EIT News

EIT to Showcase Expertise at Africa Automation Technology Fair 2025

EIT is excited to showcase its automation expertise at the Africa Automation Technology Fair (AATF) 2025! Join us in Johannesburg to explore how automation, AI, and digital transformation are shaping... Read more
EIT News

Mechanical Engineers: The Backbone of Autonomous Vehicle Innovation

Autonomous vehicles are revolutionizing transportation, but their success hinges on mechanical engineers. From sensor integration to safety systems, discover how these experts shape the future of self-driving cars. Picture this:... Read more
EIT News

From Concept to Construction: The Engineering Behind Large-Scale Infrastructure Projects

Designing and building large-scale infrastructure projects requires advanced engineering, strategic planning, and collaboration. Learn how engineers transform visionary concepts into tangible structures that shape cities and societies, addressing challenges, innovations,... Read more
Engineering Institute of Technology